Embryonic Pig Pancreatic Tissue Transplantation for the Treatment of Diabetes
نویسندگان
چکیده
BACKGROUND Transplantation of embryonic pig pancreatic tissue as a source of insulin has been suggested for the cure of diabetes. However, previous limited clinical trials failed in their attempts to treat diabetic patients by transplantation of advanced gestational age porcine embryonic pancreas. In the present study we examined growth potential, functionality, and immunogenicity of pig embryonic pancreatic tissue harvested at different gestational ages. METHODS AND FINDINGS Implantation of embryonic pig pancreatic tissues of different gestational ages in SCID mice reveals that embryonic day 42 (E42) pig pancreas can enable a massive growth of pig islets for prolonged periods and restore normoglycemia in diabetic mice. Furthermore, both direct and indirect T cell rejection responses to the xenogeneic tissue demonstrated that E42 tissue, in comparison to E56 or later embryonic tissues, exhibits markedly reduced immunogenicity. Finally, fully immunocompetent diabetic mice grafted with the E42 pig pancreatic tissue and treated with an immunosuppression protocol comprising CTLA4-Ig and anti-CD40 ligand (anti-CD40L) attained normal blood glucose levels, eliminating the need for insulin. CONCLUSIONS These results emphasize the importance of selecting embryonic tissue of the correct gestational age for optimal growth and function and for reduced immunogenicity, and provide a proof of principle for the therapeutic potential of E42 embryonic pig pancreatic tissue transplantation in diabetes.
منابع مشابه
Pig Embryonic Pancreatic Tissue as a Source for Transplantation in Diabetes
OBJECTIVE Defining an optimal costimulatory blockade-based immune suppression protocol enabling engraftment and functional development of E42 pig embryonic pancreatic tissue in mice. RESEARCH DESIGN AND METHODS Considering that anti-CD40L was found to be thrombotic in humans, we sought to test alternative costimulatory blockade agents already in clinical use, including CTLA4-Ig, anti-LFA1, an...
متن کاملA review of advances in pancreatic tissue engineering
Background: A common treatment for patients with type 1 diabetes in which pancreatic beta cells are destroyed by their own immune system attack, is insulin injection. Because this treatment is not able to maintain complete glucose homeostasis compared to the function of endogenous insulin secreted by the pancreas; in the field of pancreatic tissue engineering, various treatment strategies have ...
متن کاملXenotransplantation of embryonic pig pancreas for treatment of diabetes mellitus in non-human primates.
Transplantation therapy for diabetes in humans is limited by the low availability of human donor whole pancreas or islets. Outcomes are complicated by immunosuppressive drug toxicity. Xenotransplantation is a strategy to overcome supply problems. Implantation of tissue obtained early during embryogenesis is a way to reduce transplant immunogenicity. Pig insulin is biologically active in humans....
متن کاملEngraftment of Insulin-Producing Cells from Porcine Islets in Non-Immune-Suppressed Rats or Nonhuman Primates Transplanted Previously with Embryonic Pig Pancreas
Transplantation therapy for diabetes is limited by unavailability of donor organs and outcomes complicated by immunosuppressive drug toxicity. Xenotransplantation is a strategy to overcome supply problems. Implantation of tissue obtained early during embryogenesis is a way to reduce transplant immunogenicity. Insulin-producing cells originating from embryonic pig pancreas obtained very early fo...
متن کاملCo-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Medicine
دوره 3 شماره
صفحات -
تاریخ انتشار 2006